Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats.

نویسندگان

  • W Ji
  • E Gao
  • N Suga
چکیده

In the big brown bat (Eptesicus fuscus), conditioning with acoustic stimuli followed by electric leg-stimulation causes shifts in frequency-tuning curves and best frequencies (hereafter BF shifts) of collicular and cortical neurons, i.e., reorganization of the cochleotopic (frequency) maps in the inferior colliculus (IC) and auditory cortex (AC). The collicular BF shift recovers 180 min after the conditioning, but the cortical BF shift lasts longer than 26 h. The collicular BF shift is not caused by conditioning, as the AC is inactivated during conditioning. Therefore it has been concluded that the collicular BF shift is caused by the corticofugal auditory system. The collicular and cortical BF shifts both are not caused by conditioning as the somatosensory cortex is inactivated during conditioning. Therefore it has been hypothesized that the cortical BF shift is mostly caused by both the subcortical (e.g., collicular) BF shift and the activity of nonauditory systems such as the somatosensory cortex excited by an unconditioned leg-stimulation and the cholinergic basal forebrain. The main aims of our present studies are to examine whether acetylcholine (ACh) applied to the AC augments the collicular and cortical BF shifts caused by the conditioning and whether atropine applied to the AC abolishes the cortical BF shift but not the collicular BF shift, as expected from the preceding hypothesis. In the awake bat, we made the following findings. ACh applied to the AC augments not only the cortical BF shift but also the collicular BF shift through the corticofugal system. Atropine applied to the AC reduces the collicular BF shift and abolishes the cortical BF shift which otherwise would be caused. ACh applied to the IC significantly augments the collicular BF shift but affects the cortical BF shift only slightly. ACh makes the cortical BF shift long-lasting beyond 4 h, but it cannot make the collicular BF shift long-lasting beyond 3 h. Atropine applied to the IC abolishes the collicular BF shift. It reduces the cortical BF shift but does not abolish it. Our findings favor the hypothesis that the BF shifts evoked by the corticofugal system, and an increased ACh level in the AC evoked by the basal forebrain are both necessary to evoke a long-lasting cortical BF shift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudo-conditioning: Role of acetylcholine receptors and the somatosensory cortex Running title: Cortical plasticity elicited by pseudo-conditioning

Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudo-conditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore, the neural circuit evoking the nonspecific changes must also be ...

متن کامل

Development of reorganization of the auditory cortex caused by fear conditioning: effect of atropine.

Reorganization of the frequency map in the central auditory system is based on shifts in the best frequencies (BFs; hereafter, BF shifts), together with the frequency-response curves, of auditory neurons. In the big brown bat, conditioning with acoustic stimulation followed by electric leg-stimulation causes BF shifts of collicular and cortical neurons. The collicular BF shift develops quickly ...

متن کامل

Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: role of acetylcholine receptors and the somatosensory cortex.

Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudoconditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore the neural circuit evoking the nonspecific changes must also be di...

متن کامل

Corticofugal Feedback for Collicular Plasticity evoked by Electric Stimulation of The Inferior Colliculus Running head: Corticofugal feedback for collicular plasticity

Focal electric stimulation of the auditory cortex, 30-minute repetitive acoustic stimulation and auditory fear conditioning each evoke shifts of the frequency-tuning curves (hereafter, best frequency [BF] shifts) of cortical and collicular neurons. The short-term collicular BF shift is produced by the corticofugal system and primarily depends on the relationship in BF between a recorded collicu...

متن کامل

Effects of agonists and antagonists of NMDA and ACh receptors on plasticity of bat auditory system elicited by fear conditioning.

In big brown bats, tone-specific plastic changes [best frequency (BF) shifts] of cortical and collicular neurons can be evoked by auditory fear conditioning, repetitive acoustic stimuli or cortical electric stimulation. It has been shown that acetylcholine (ACh) plays an important role in evoking large long-term cortical BF shifts. However, the role of N-methyl-d-aspartate (NMDA) receptors in e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2001